Extensive Characterization and Comparison of Endothelial Cells Derived from Dermis and Adipose Tissue: Potential Use in Tissue Engineering
نویسندگان
چکیده
Tissue-engineered constructs need to become quickly vascularized in order to ensure graft take. One way of achieving this is to incorporate endothelial cells (EC) into the construct. The adipose tissue stromal vascular fraction (adipose-SVF) might provide an alternative source for endothelial cells as adipose tissue can easily be obtained by liposuction. Since adipose-EC are now gaining more interest in tissue engineering, we aimed to extensively characterize endothelial cells from adipose tissue (adipose-EC) and compare them with endothelial cells from dermis (dermal-EC). The amount of endothelial cells before purification varied between 4-16% of the total stromal population. After MACS selection for CD31 positive cells, a >99% pure population of endothelial cells was obtained within two weeks of culture. Adipose- and dermal-EC expressed the typical endothelial markers PECAM-1, ICAM-1, Endoglin, VE-cadherin and VEGFR2 to a similar extent, with 80-99% of the cell population staining positive. With the exception of CXCR4, which was expressed on 29% of endothelial cells, all other chemokine receptors (CXCR1, 2, 3, and CCR2) were expressed on less than 5% of the endothelial cell populations. Adipose-EC proliferated similar to dermal-EC, but responded less to the mitogens bFGF and VEGF. A similar migration rate was found for both adipose-EC and dermal-EC in response to bFGF. Sprouting of adipose-EC and dermal-EC was induced by bFGF and VEGF in a 3D fibrin matrix. After stimulation of adipose-EC and dermal-EC with TNF-α an increased secretion was seen for PDGF-BB, but not uPA, PAI-1 or Angiopoietin-2. Furthermore, secretion of cytokines and chemokines (IL-6, CCL2, CCL5, CCL20, CXCL1, CXCL8 and CXCL10) was also upregulated by both adipose- and dermal-EC. The similar characteristics of adipose-EC compared to their dermal-derived counterpart make them particularly interesting for skin tissue engineering. In conclusion, we show here that adipose tissue provides for an excellent source of endothelial cells for tissue engineering purposes, since they are readily available, and easily isolated and amplified.
منابع مشابه
Isolation and in vitro Characterization of Mesenchymal Stem Cells Derived from the Pulp Tissue of Human Third Molar Tooth
Background: It is still controversial that the stem cells isolated from human dental pulp meets the criteria for mesenchymal stem cells (MSCs). The aim of the present study was to examine whether or not they are MSCs, or are distinct stem cells population residing in tooth pulp. Methods: Adherent fibroblastic cells in the culture of pulp tissue from human third molars were propagated through se...
متن کاملIsolation, Characterization and Differentiation of Rat Adipose Tissue Derived Mesenchymal Stem Cells
Introduction: Mesenchymal stem cells have the potential of self-renewal and differentiation into different cell types, including blood cells, heart, nerves and cartilage, and have unlimited power for division. These cells can be obtained from cord, before implantation from fertilized cells and also from various tissues of adults although the differentiation power and the ability to reproduce ...
متن کاملInduction of Chondrogenic Differentiation of Human Adipose-Derived Stem Cells with TGF-β3 in Pellet Culture System
Objective Adult stem cells which are derived from different tissues, with their unique abilities to self-renew and differentiate into various phenotypes have the potential for cell therapy and tissue engineering. Human adipose tissue is an appropriate source of mesenchymal stem cells with wide differentiation potential for tissue engineering research. In this study isolated stem cells from hum...
متن کاملEffect of Purification of Human Adipose-derived Mesenchymal Stem Cells on the Expression of vWF Cell Factor Under Chemical and Mechanical Conditions
Introduction: Human adipose-derived mesenchymal stem cells (hADSCs) are easily accessible in the body, and under appropriate conditions, they can be directed toward various phenotypes. Therefore, hADSCs have been considered as a potential cell source for tissue engineering applications. hADSCs are able to differentiate into endothelial cells which covers the interior surface of vessels, in vi...
متن کاملReview Paper: Embryonic Stem Cell and Osteogenic Differentiation
Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells, including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016